ANALISIS LITERATUR MENGENAI PERAN AI AGENT DALAM EFISIENSI AUTOMASI DIGITAL


Abstract
Perkembangan teknologi kecerdasan buatan (Artificial Intelligence/AI) telah mendorong lahirnya AI Agent sebagai komponen kunci dalam mendukung efisiensi dan automasi digital di berbagai sektor. AI Agent berfungsi sebagai sistem cerdas yang mampu melakukan tugas-tugas secara otonom dan adaptif, mulai dari chatbot hingga sistem multi-agent berbasis pembelajaran mesin. Penelitian ini bertujuan untuk menganalisis kontribusi AI Agent terhadap efisiensi operasional dan produktivitas kerja organisasi, serta mengevaluasi tantangan dan potensi pengembangannya di masa depan. Pendekatan penelitian dilakukan melalui Systematic Literature Review (SLR) dengan merujuk pada metodologi Kitchenham, yang mencakup proses pencarian, seleksi, dan evaluasi terhadap 31 artikel ilmiah dari tahun 2017–2025, dengan 28 artikel memenuhi kriteria inklusi. Pencarian literatur dilakukan melalui lima database ilmiah utama, yaitu IEEE Xplore, ResearchGate, SpringerLink, Scopus, dan arXiv, dengan kata kunci terkait AI Agent dan efisiensi automasi digital. Hasil analisis menunjukkan bahwa penerapan AI Agent dapat meningkatkan efisiensi operasional hingga 40% dan mengurangi waktu produksi sebesar 30%. Teknologi pendukung seperti Large Language Models (LLM), Internet of Things (IoT), dan arsitektur multi-agent turut memperkuat kemampuan adaptasi AI Agent dalam konteks industri kompleks. Namun, integrasi teknologi ini masih menghadapi kendala, seperti kurangnya kesiapan SDM, hambatan struktural organisasi, serta isu etika dan transparansi sistem. Sebagai usulan riset lanjutan, studi ini merekomendasikan pengembangan model evaluasi kinerja AI Agent lintas sektor, integrasi dengan teknologi emerging seperti digital twin dan edge computing, serta analisis kesiapan organisasi dalam implementasi sistem AI. Dengan demikian, penelitian ini memberikan landasan strategis untuk optimalisasi AI Agent yang berkelanjutan dan bertanggung jawab dalam mendukung transformasi digital di berbagai sektor.
Downloads
References
Ashton, H. (2020). AI Legal Counsel to train and regulate legally constrained Autonomous systems. 2020 IEEE International Conference on Big Data (Big Data), 2093–2098. https://doi.org/10.1109/BigData50022.2020.9378389
Bryson, J. J. (2020). The Artificial Intelligence of the Ethics of Artificial Intelligence. In The Oxford Handbook of Ethics of AI (pp. 2–25). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190067397.013.1
Casper, S., Bailey, L., Hunter, R., Ezell, C., Cabalé, E., Gerovitch, M., Slocum, S., Wei, K., Jurkovic, N., Khan, A., Christoffersen, P. J. K., Ozisik, A. P., Trivedi, R., Hadfield-Menell, D., & Kolt, N. (2025). The AI Agent Index. http://arxiv.org/abs/2502.01635
Dennis, A. R., Lakhiwal, A., & Sachdeva, A. (2023). AI Agents as Team Members: Effects on Satisfaction, Conflict, Trustworthiness, and Willingness to Work With. Journal of Management Information Systems, 40(2), 307–337. https://doi.org/10.1080/07421222.2023.2196773
Dmitrieva, E., Krishna, G., Chhabra, S., Pavithra, A., & Sharma, K. (2024). IoT and AI Integration: An Experiment on Smart Manufacturing Efficiency in Industry 5.0. BIO Web of Conferences, 86, 01062. https://doi.org/10.1051/bioconf/20248601062
Du, H., Thudumu, S., Vasa, R., & Mouzakis, K. (2024). A Survey on Context-Aware Multi-Agent Systems: Techniques, Challenges and Future Directions. http://arxiv.org/abs/2402.01968
Durante, Z., Huang, Q., Wake, N., Gong, R., Park, J. S., Sarkar, B., Taori, R., Noda, Y., Terzopoulos, D., Choi, Y., Ikeuchi, K., Vo, H., Fei-Fei, L., & Gao, J. (2024). Agent AI: Surveying the Horizons of Multimodal Interaction. http://arxiv.org/abs/2401.03568
Flavián, C., Belk, R. W., Belanche, D., & Casaló, L. V. (2024). Automated social presence in AI: Avoiding consumer psychological tensions to improve service value. Journal of Business Research, 175, 114545. https://doi.org/10.1016/j.jbusres.2024.114545
Guo, T., Chen, X., Wang, Y., Chang, R., Pei, S., Chawla, N. V., Wiest, O., & Zhang, X. (2024). Large Language Model based Multi-Agents: A Survey of Progress and Challenges. http://arxiv.org/abs/2402.01680
Huang, Q., Wake, N., Sarkar, B., Durante, Z., Gong, R., Taori, R., Noda, Y., Terzopoulos, D., Kuno, N., Famoti, A., Llorens, A., Langford, J., Vo, H., Fei-Fei, L., Ikeuchi, K., & Gao, J. (2024). Position Paper: Agent AI Towards a Holistic Intelligence. http://arxiv.org/abs/2403.00833
Johnson, D. G., & Verdicchio, M. (2017). Reframing AI Discourse. Minds and Machines, 27(4), 575–590. https://doi.org/10.1007/s11023-017-9417-6
Kamalov, F., Santandreu Calonge, D., & Gurrib, I. (2023). New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Sustainability, 15(16), 12451. https://doi.org/10.3390/su151612451
Kapoor, S., Stroebl, B., Siegel, Z. S., Nadgir, N., & Narayanan, A. (2024). AI Agents That Matter. http://arxiv.org/abs/2407.01502
Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., & Abraham, A. (2022). AI-Based Conversational Agents: A Scoping Review From Technologies to Future Directions. IEEE Access, 10, 92337–92356. https://doi.org/10.1109/ACCESS.2022.3201144
M, A. H., Simamora, R., & Ulwi, K. (2024). Implementation of Agent Systems in Big Data Management: Integrating Artificial Intelligence for Data Mining Optimization. Journal of Computer Science Advancements, 2(1), 33–47. https://doi.org/10.70177/jsca.v2i1.1210
Madakam, S., Holmukhe, R. M., & Jaiswal, D. K. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). Journal of Information Systems and Technology Management, 16. https://doi.org/10.4301/S1807-1775201916001
McKinsey & Company. (2023). The Economic potential of generative AI: The next productivity frontier.
Miller, T. (2017). Explanation in Artificial Intelligence: Insights from the Social Sciences. http://arxiv.org/abs/1706.07269
Raftopoulos, M. (2024). Organizational Challenges in Adoption and Implementation of Artificial Intelligence. https://doi.org/10.24251/HICSS.2024.698
Rane, N. L., Choudhary, S. P., & Rane, J. (2024). Artificial Intelligence, Natural Language Processing, and Machine Learning to Enhance e-Service Quality on e-Commerce Platforms. International Journal of Artificial Intelligence and Machine Learning, 4(2), 67–82. https://doi.org/10.51483/IJAIML.4.2.2024.67-82
Satyadhar Joshi. (2025). Review of autonomous systems and collaborative AI agent frameworks. International Journal of Science and Research Archive, 14(2), 961–972. https://doi.org/10.30574/ijsra.2025.14.2.0439
Song, Y. G., Ham, J., Jin, E., & Eastin, M. S. (2024). Advertising Artificial Intelligence (AI) Agents: The Effects of Social Presence, Sincerity, and Social Benefit Appeals. Journal of Interactive Advertising, 24(3), 185–202. https://doi.org/10.1080/15252019.2024.2383212
Su, Z., & Sheng, W. (2024). Context-Aware Conversation Adaptation for Human-Robot Interaction. 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2542–2548. https://doi.org/10.1109/IROS58592.2024.10802500
Wheeler, A., & Varner, J. D. (2023). Scalable Agent-Based Modeling for Complex Financial Market Simulations. http://arxiv.org/abs/2312.14903
Willie, A. (2024). Ethical Implications of Autonomous Systems in High-Stakes Environments. December.
Yuan, L., Zhang, Z., Li, L., Guan, C., & Yu, Y. (2023). A Survey of Progress on Cooperative Multi-agent Reinforcement Learning in Open Environment. http://arxiv.org/abs/2312.01058

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.