Use of Artificial Neural Network in Predicting Financial Distress in Banking Companies in Indonesia


Abstract
A situation known as .financial distress. occurs when the company's finances are in poor or experiencing a decline before bankruptcy occurs. To test and predict transport, you can use an Artificial Neural Network. The purpose aims to predict Banks .that are listed on the. Indonesian stock exchange. are experiencing financial difficulties using predictive indicators, namely the current .ratio, .return on equity, .and BOPO. Based on the research results of the summary model in neural network testing, the Artificial Neural Network backpropagation algorithm was applied to obtain 3-2-2 architecture results. Based on the results of the three tests, the percent incorrect prediction value was obtained, which had the lowest error rate, namely in the first test, namely 11.7% or a model correctness level of 88.3% in determining the neural network. The highest influence on financial distress is the Current Ratio variable, with an importance value of 0.521. Based on three tests, it is stated that the prediction model using the artificial neural network algorithm backpropagation indicators CR, ROE, and BOPO can predict financial distress. CR is the most dominant influencer in financial distress. The outcome of this research have implications for banking companies that need to pay attention to or maintain liquidity levels because this proportion shows how much money the organization has plus assets that can turn into money in the short term.
References
[2] S. N. Azis, S. N., & Rahardjo, “Analisis Faktor-Faktor Yang Mempengaruhi Financial Distress Pada Perbankan Yang Terdaftar di Bursa Efek Indonesia,” vol. 07, no. 02, pp. 117–131, 2020.
[3] R. Awalia, “Prediksi Financial Distress menggunakan Artificial Neural Network (ANN) Studi Kasus pada Perusahaan Perbankan yang Terdaftar di Bursa Efek Indonesia (BEI) Periode 2017-2021,” Karya Ilmiah. Univ. Telkom, S1 Akuntansi. Bandung, 2023.
[4] Saraswati dan Urijzah, . “Prediksi Financial Distress Dengan Metode Neural Network,” STIE PERBANAS SURABAYA, 2014.
[5] A. Rahma dan Dhea, “Analisis determinan financial distress bank umum syariah di Indonesia menggunakan jaringan syaraf tiruan,” Univ. Islam Negeri Maulana Malik Ibrahim., 2021.
[6] N. Nurdini, R. A., Priyadi, Y., & Norita, “Analisis Prediksi Kebangkrutan Perusahaan Menggunakan Artificial Neural Network Pada Sektor Pertambangan Batubara,” J. Sist. Inf. Bisnis, vol. 8, no. 1, pp. 107–114, 2018.
[7] R. Nizfa, S., F. dan Brady, “Analisis Prediksi Financial Distress Menggunakan Jaringan Syaraf Triuan pada Perusahaan Retail yang Terdaftar di Bursa Efek Indonesia,” 2021.
[8] Altman, E. I., Hotchkiss, E., & Wang, W, “Corporate Financial Distress, Restructuring, and Bankruptcy: Analyze Leveraged Finance, Distressed Debt, and Bankruptcy (Fourth).,” John Wiley Sons, Inc, 2019, [Online]. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119541929.
[9] I. Fahmi, “Analisis Laporan Keuangan. Bandung: Alfabeta.,” 2016.
[10] C. dan I. G. Kurniasari, “Analisis Pengaruh Rasio Camel Dalam Memprediksi Financial Distress Perbankan Indonesia,” Diponegoro J. Account., vol. 2, no. 4, pp. 1–10, 2013.
[11] M. dan A. H. Hanafi., “Analisis Laporan,” Yogyakarta UPP STIM YKPN., 2018.
[12] Kasmir, Analisis Laporan Keuangan. Jakarta: PT Raja Grafindo Persada, 2018.
[13] H. Yulsiati, “Pengaruh Debt To Assets Ratio, Debt To Equity Ratio Dan Net Profit Margin Terhadap Return On Equity Pada Perusahaan Property Dan Real Estate Yang Terdaftar Di Bursa Efek Indonesia,” J. Akuntanika, vol. 1, no. 2, pp. 1–25, 2016.
[14] B. Riyanto, “Dasar-Dasar Pembelanjaan Perusahaan, ed. 4, BPFEYOGYAKARTA.,” 2010.
[15] S. dan E. P. Husnan, Dasar-dasar Manajemen Keuangan, Keenam. 2012.
[16] M. S. P. Hasibuan, Manajemen Sumber Daya Manusia. Jakarta: Bumi Aksara, 2017.
[17] M. Hasibuan, “Manajemen Sumber Daya Manusia,” Bumi Aksara, 2017.
[18] L. V. Fausett, “Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice Hall, New Jersey,” 1994.
[19] F. Amri, “Jaringan Syaraf Tiruan Untuk Memprediksi Peringkat Akreditasi Program Studi Perguruan Tinggi,” J. Sains dan Inform., vol. 1, no. 1, pp. 37–43, 2015.
[20] D. Puspitaningrum, Pengantar Jaringan Syaraf Tiruan. Yogyakarta: Andi, 2006.
[21] I. Ghozali, “Aplikasi Analisis Multivariative Dengan Program IBM SPSS,” Semarang: Badan Penerbit UNDIP, 2013.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.