PENGOPTIMALAN PENGUKURAN BREGMAN DIVERGENCES MENGGUNAKAN DAVIES BOULDIN INDEX


Abstract
Penentuan cluster optimal ini seringkali ambigu karena dihasilkan dari beberapa kelompok. Pemilihan informasi dari kelompok mana yang akan digunakan oleh pengguna menjadi masalah tersendiri karena menyangkut pembuatan kebijakan. Davies Bouldin Index (DBI) merupakan teknik evaluasi cluster untuk menentukan jumlah cluster yang optimal dan didukung dengan pengukuran jarak yang tepat. Penelitian ini bertujuan untuk mendapatkan cluster melalui teknik DBI yang diterapkan pada pengukuran Bregman Divergences, Mahalano dan Square Euclidean Distance, menggunakan algoritma K-Means dan K-Medoids. Hasil pengujian ditunjukkan melalui beberapa indikator yang digunakan sebagai tolak ukur untuk mengetahui kinerja Bregman Divergences dalam menentukan jumlah cluster seperti korelasi, algoritma cluster yang digunakan, pola DBI, hasil DBI, k-optimal dan waktu yang dibutuhkan untuk pengujian. Melalui kedua algoritma clustering tersebut, jarak Mahalano dapat menghasilkan pola pengelompokan yang konsisten dan teknik pengukuran Square Euclidean Distance berhasil menunjukkan performa DBI terbaik yang menempatkan k=2 sebagai cluster optimal, nilai DBI terendah sebesar 0,882 dan 1,030 pada waktu pengujian. selama 0 detik.
Downloads
References
Dubey, A. K., Gupta, U., & Jain, S. (2018). Comparative study of K-means and fuzzy C-means algorithms on the breast cancer data. International Journal on Advanced Science, Engineering and Information Technology, 8(1), 18–29. https://doi.org/10.18517/ijaseit.8.1.3490
Edelsbrunner, H., & Wagner, H. (2017). Topological data analysis with bregman divergences. Leibeniz International Proceedings in Informatics 33rd International Symposium on Computatiional Geometry (SoCG 2017), 39(39), 1–16. https://doi.org/10.4230/LIPIcs.SoCG.2017.39
Fränti, P. (2017). Introduction. In Cluster Validation (p. 110).
Ghorbani, H. (2019). Mahalanobis Distance and Its Application for Detecting Multivariate Outliers. Facta Universitatis, Series: Mathematics and Informatics, 34(3), 583–595. https://doi.org/10.22190/fumi1903583g
Hossain, M., & Abufardeh, S. (2019). A New Method of Calculating Squared Euclidean Distance (SED) Using pTree Technology and Its Performance Analysis. Proceedings of 34th International Confer- Ence on Computers and Their Applications, 58(1), 45–34. https://doi.org/10.29007/trrg
Kurniawan, W., Rifai, A., Gata, ; Windu, & Gunawan, D. (2020). Analisis Algoritma K-Medoids Clustering Dalam Menentukan Pemesanan Hotel. Jurnal Swabumi, 8(2), 182–187. https://www.kaggle.com
Martino, A., Ghiglietti, A., Ieva, F., & Paganoni, A. M. (2017). A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data. Statistical Methods and Applications, August, 1–23. https://doi.org/10.1007/s10260-018-00446-6
Pathak, B., & Lal, N. (2017). A survey on clustering in data mining. International Journal of Computer Applications, 159(2), 6–11. https://doi.org/10.1145/1980022.1980143
Pratiwi, H., & Wibowo, A. P. W. (2022). Implementasi Algoritma K-Means Untuk Mengklaster Kelompok Sektor Perkebunan Di Indonesia. JOISIE Journal Of Information System And Informatics Engineering, 6(1), 39–48.
Sari, D. P. (2021). Pengelompokkan Penyakit Berdasarkan Lingkungan Dengan Algoritma K-Means Pada Puskesmas Sungai Tarab 2. JOISIE (Journal Of Information Systems And Informatics Engineering), 5(2), 75–81. https://doi.org/10.35145/joisie.v5i2.1700
Siregar, H. L., Lestari Siregar, H., Zarlis, M., & Efendi, S. (2023). Cluster Analysis using K-Means and K-Medoids Methods for Data Clustering of Amil Zakat Institutions Donor. Jurnal Media Informatika Budidarma, 7(2), 668–677. https://doi.org/10.30865/mib.v7i2.5315
Sprung, B. (2019). Upper and lower bounds for the Bregman divergence. Journal of Inequalities and Applications, 2019(4), 6–12. https://doi.org/10.1186/s13660-018-1953-y
Sun, D., Fei, H., & Li, Q. (2018). A Bisecting K-Medoids clustering Algorithm Based on Cloud Model. IFAC-Papers OnLine, 51(11), 308–315. https://doi.org/10.1016/j.ifacol.2018.08.301
Sureja, N., Chawda, B., & Vasant, A. (2022). An improved K-medoids clustering approach based on the crow search algorithm. Journal of Computational Mathematics and Data Science, 3(July 2021), 12. https://doi.org/10.1016/j.jcmds.2022.100034
Tempola, F., & Assagaf, A. F. (2018). Clustering of Potency of Shrimp In Indonesia With K-Means Algorithm And Validation of Davies-Bouldin Index. Atlantis Highlights in Engineering (AHE), Volume 1 International Conference on Science and Technology, 1(1), 730–733. https://doi.org/10.2991/icst-18.2018.148
The Ministry of Health. (2018). Situasi Balita Pendek (stunting) di Indonesia. The Ministry of Health of Republic Indonesia, 1, 1–56. https://doi.org/ISSN 2088 - 270 X
Wang Yan, E., Jian, A., Yan, L., & Honggang, W. (2020). Optimization of K-medoids Algorithm for Initial Clustering Center. Journal of Physics: Conference Series, 1487(1), 8. https://doi.org/10.1088/1742-6596/1487/1/012011
Wibowo, D. W., Yunshasnawa, Y., Setiawan, A., Rohadi, E., & Khabibi, M. K. (2019). Application of K-medoids clustering method for grouping corn plants based on productivity, production, and area of land in East Java. Journal of Physics: Conference Series, 1402(7), 6. https://doi.org/10.1088/1742-6596/1402/7/077061
Wijaya, Y. A., Kurniady, D. A., Setyanto, E., Tarihoran, W. S., Rusmana, D., & Rahim, R. (2021). Davies Bouldin Index Algorithm for Optimizing Clustering Case Studies Mapping School Facilities. TEM Journal, 10(3), 1099–1103. https://doi.org/10.18421/TEM103-13

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.