ANALYSING SERVICE QUALITY USING SENTIMENT ANALYSIS AND TOPIC MODELING: A CASE STUDY OF THE LIVIN MANDIRI APPLICATION

  • Khairin Andini Safarah Universitas Papua
  • Dedi I. Inan Universitas Papua
  • Ratna Juita Universitas Papua
  • Victor Arie L. Sirait Universitas Papua
Abstract viewed = 15 times
PDF (Bahasa Indonesia) downloaded = 11 times

Abstract

With the increasing number of m-banking users, understanding customer satisfaction has become crucial for banks in improving service quality and maintaining loyalty. This study aims to evaluate the satisfaction level regarding the service quality of the Livin Mandiri m-banking application using sentiment analysis and topic modeling. The data were gathered from 13,692 user reviews on the Google Play Store through web scraping techniques. After data cleansing and processing, sentiment analysis was conducted to identify trends in positive, negative, and neutral sentiments. Topic modeling using the Latent Semantic Indexing (LSI) method was employed to gain deeper insights into user discussions about service quality. The findings reveal that, although the Livin Mandiri application offers various useful features, the majority of user reviews are negative. Topic modeling further highlights that the primary complaints focus on technical issues such as transaction failures and verification challenges. Additionally, the study indicates a need to enhance application stability and customer service to improve user satisfaction. This study makes a significant contribution to understanding the service quality of m-banking applications by combining sentiment analysis and topic modeling, offering valuable insights for the future development and improvement of applications in the banking sector.

Downloads

Download data is not yet available.

References

Aaputra, S. A., Didi Rosiyadi, Windu Gata, & Syepry Maulana Husain. (2019). Sentiment Analysis Analysis of E-Wallet Sentiments on Google Play Using the Naive Bayes Algorithm Based on Particle Swarm Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 377–382. https://doi.org/10.29207/resti.v3i3.1118
Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
Baabdullah, A. M., Alalwan, A. A., Rana, N. P., Kizgin, H., & Patil, P. (2019). Consumer use of mobile banking (M-Banking) in Saudi Arabia: Towards an integrated model. International Journal of Information Management, 44, 38–52. https://doi.org/10.1016/j.ijinfomgt.2018.09.002
Campbell, J. C., Hindle, A., & Stroulia, E. (2015). Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data. The Art and Science of Analyzing Software Data, 3, 139–159. https://doi.org/10.1016/B978-0-12-411519-4.00006-9
Dianta, I. A., & Zusrony, E. (2019). Analisis Pengaruh Sistem Keamanan Informasi Perbankan Pada Nasabah Pengguna Internet Banking. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 3(1), 1. https://doi.org/10.29407/intensif.v3i1.12125
Fernando, E. H., & Toba, H. (2020). Pemanfaatan Latent Semantic Indexing untuk Mengukur Potensi Kerjasama Jurnal Ilmiah Lintas Universitas. Jurnal Teknik Informatika Dan Sistem Informasi, 6(3), 489–503. https://doi.org/10.28932/jutisi.v6i3.2894
Giovani, A. P., Ardiansyah, A., Haryanti, T., Kurniawati, L., & Gata, W. (2020). Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi. Jurnal Teknoinfo, 14(2), 115. https://doi.org/10.33365/jti.v14i2.679
Habibi, M., Priadana, A., Saputra, A. B., & Cahyo, P. W. (2021). Topic Modelling of Germas Related Content on Instagram Using Latent Dirichlet Allocation (LDA). 34(Ahms 2020), 260–264. https://doi.org/10.2991/ahsr.k.210127.060
Hudha, M., Supriyati, E., & Listyorini, T. (2022). Analisis Sentimen Pengguna Youtube Terhadap Tayangan #Matanajwamenantiterawan Dengan Metode Naïve Bayes Classifier. JIKO (Jurnal Informatika Dan Komputer), 5(1), 1–6. https://doi.org/10.33387/jiko.v5i1.3376
Inan, D. I., Nizar Hidayanto, A., Juita, R., Andiyani, K., Hariyana, N., Tiffany, P., Prima Tangis Pertiwi, T., & Kurnia, S. (2022). Technology anxiety and social influence towards intention to use of ride-hailing service in Indonesia. Case Studies on Transport Policy, 10(3), 1591–1601. https://doi.org/10.1016/j.cstp.2022.05.017
Liu, S., Wang, X., Liu, M., & Zhu, J. (2017). Towards better analysis of machine learning models: A visual analytics perspective. Visual Informatics, 1(1), 48–56. https://doi.org/10.1016/j.visinf.2017.01.006
Ponweiser, M. (2012). Latent Dirichlet Allocation in R. May, 2–21. https://doi.org/10.57938/533618e5-dcd9-4c8f-913a-2339fa145c71
Rahmad, A. N., & Pribadi, F. S. (2018). Edu Komputika Journal. Edu Komputika Journal, 5(1), 33–43.
Risdiyanto, C. F., Inan, D. I., Wurarah, R. N., & Fenetiruma, O. A. (2024). Analisis Faktor-faktor Pendukung dan Penghambat Beralih Mengadopsi Mobile Banking di Papua Barat Memanfaatkan PLS-SEM dan Perspektif Status Quo Bias. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(2), 637–646. https://doi.org/10.57152/malcom.v4i2.1289
Sari, R., & Hayuningtyas, R. Y. (2019). Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Pada Wisata TMII Berbasis Website. Indonesian Journal on Software Engineering (IJSE), 5(2), 51–60. https://doi.org/10.31294/ijse.v5i2.6957
Sepri, D., Algoritma, P., Bayes, N., Analisis, U., Penggunaan, K., & Bank, A. (2020). Media Cetak. Journal of Computer System and Informatics (JoSYC, 2(1), 135–139.
Singh, K. P., Basant, N., & Gupta, S. (2011). Support vector machines in water quality management. Analytica Chimica Acta, 703(2), 152–162. https://doi.org/10.1016/j.aca.2011.07.027
Tscherne, F., Wilke, N., Schachenhofer, B., Roux, K., & Tavlaridis, G. (2016). The thermo lignum ecological insect pest eradication process: The effects on gilded and painted wooden objects. International Journal of Conservation Science, 7(SpecialIssue1), 295–300.
Wiguna, R. A. raffaidy, & Rifai, A. I. (2021). Analisis Text Clustering Masyarakat Di Twitter Mengenai Omnibus Law Menggunakan Orange Data Mining. Journal of Information Systems and Informatics, 3(1), 1–12. https://doi.org/10.33557/journalisi.v3i1.78
Published
2024-12-30
How to Cite
SAFARAH, Khairin Andini et al. ANALYSING SERVICE QUALITY USING SENTIMENT ANALYSIS AND TOPIC MODELING: A CASE STUDY OF THE LIVIN MANDIRI APPLICATION. JOISIE (Journal Of Information Systems And Informatics Engineering), [S.l.], v. 8, n. 2, p. 209-220, dec. 2024. ISSN 2527-3116. Available at: <https://ejournal.pelitaindonesia.ac.id/ojs32/index.php/JOISIE/article/view/4517>. Date accessed: 17 jan. 2025. doi: https://doi.org/10.35145/joisie.v8i2.4517.
Section
Articles